๊ด€๋ฆฌ ๋ฉ”๋‰ด

Unfazedโ—๏ธ๐ŸŽฏ

10์˜ ์ œ๊ณฑ์ˆ˜์™€ ๋ชจ๋“ˆ๋กœ 9 ์—ฐ์‚ฐ์˜ ํ™œ์šฉ, ๋””์ง€ํ„ธ ๋ฃจํŠธ(์ž๋ฆฟ์ˆ˜๊ทผ), repeated digital sum ๋ณธ๋ฌธ

๋ฌธ์ œ ํ•ด๊ฒฐ (PS)/๊ธฐ์–ตํ•ด๋‘˜ ๊ฒƒ

10์˜ ์ œ๊ณฑ์ˆ˜์™€ ๋ชจ๋“ˆ๋กœ 9 ์—ฐ์‚ฐ์˜ ํ™œ์šฉ, ๋””์ง€ํ„ธ ๋ฃจํŠธ(์ž๋ฆฟ์ˆ˜๊ทผ), repeated digital sum

9taetae9 2024. 1. 13. 04:43
728x90

๋””์ง€ํ„ธ ๋ฃจํŠธ๋ฅผ ๊ณ„์‚ฐํ•  ๋•Œ % 9 ์—ฐ์‚ฐ์„ ์‚ฌ์šฉํ•˜๋Š” ๊ฒƒ์€ ์ˆซ์ž์˜ '๋ชจ๋“ˆ๋กœ 9'์— ๋Œ€ํ•œ ์„ฑ์งˆ๊ณผ ๊ด€๋ จ์ด ์žˆ๋‹ค.
์ˆซ์ž์˜ '๊ฐ ์ž๋ฆฌ์ˆ˜์˜ ํ•ฉ'๊ณผ '๋ชจ๋“ˆ๋กœ 9' ์—ฐ์‚ฐ ๊ฐ„์˜ ๊ด€๊ณ„๋ฅผ ์‚ดํŽด๋ณด์ž.

๋ชจ๋“ˆ๋กœ ์—ฐ์‚ฐ์€ ๋ง์…ˆ๊ณผ ๊ณฑ์…ˆ์— ๋Œ€ํ•ด ๋ถ„๋ฐฐ ๋ฒ•์น™์„ ๋งŒ์กฑํ•œ๋‹ค. ์ฆ‰, (a + b) % n = ((a % n) + (b % n)) % n๊ณผ (a * b) % n = ((a % n) * (b % n)) % n์ด๋‹ค.

๊ฐ ์ž๋ฆฌ์ˆ˜์˜ ํ•ฉ = ํ•ด๋‹น ์ˆซ์ž ๋ชจ๋“ˆ๋กœ 9
์–ด๋–ค ์ˆซ์ž๋ฅผ 10์ง„๋ฒ•์œผ๋กœ ํ‘œํ˜„ํ–ˆ์„ ๋•Œ, ํ•ด๋‹น ์ˆ˜์˜ ๋””์ง€ํ„ธ ๋ฃจํŠธ๋Š” ํ•ด๋‹น ์ˆ˜๋ฅผ 9๋กœ ๋‚˜๋ˆˆ ๋‚˜๋จธ์ง€์™€ ๊ฐ™๋‹ค. ์˜ˆ๋ฅผ ๋“ค์–ด, ์ˆซ์ž 467์€ 4 * 100 + 6 * 10 + 7๊ณผ ๊ฐ™์ด ํ‘œํ˜„ํ•  ์ˆ˜ ์žˆ๋‹ค. ์ด ๋•Œ, 100๊ณผ 10์€ (mod 9) ์—ฐ์‚ฐ์— ์˜ํ•ด 1์ด ๋˜๋ฏ€๋กœ  (์ฆ‰, 100 % 9 = 10 % 9 = 1), 467 % 9๋Š” (4 * 100 + 6 * 10 + 7) % 9 ์€ (4 + 6 + 7) % 9 ๊ณผ ๊ฐ™์•„์ง„๋‹ค. ์ด์–ด์„œ ๋‘์ž๋ฆฌ ์ˆ˜(4+6+7=17) ์ด๋ฏ€๋กœ ๊ณ„์†ํ•ด์„œ ์—ฐ์‚ฐํ•˜๋ฉด (1 * 10 + 7) % 9 = 8 ์ด๋ฏ€๋กœ 467์˜ ๋””์ง€ํ„ธ ๋ฃจํŠธ๋Š” 8์ด๋‹ค.
 
ํ•ด๋‹น๊ณผ์ •์„ ๋ชจ๋“ˆ๋กœ ๊ณฑ์…‹ ๋ถ„๋ฐฐ ๋ฒ•์น™์„ ์ƒ๋žตํ•˜๊ณ  467 % 9 = 8 ๋กœ ๊ฐ„๋‹จํ•˜๊ฒŒ ๊ตฌํ•  ์ˆ˜  ์žˆ๋‹ค.

**mod 9 ์—ฐ์‚ฐ์˜ ๊ฒฐ๊ณผ๊ฐ€ 0์ธ ๊ฒฝ์šฐ, ๋””์ง€ํ„ธ ๋ฃจํŠธ๋Š” 9๋กœ ์ •์˜๋œ๋‹ค(์˜ˆ: 18์˜ ๋””์ง€ํ„ธ ๋ฃจํŠธ๋Š” 1 + 8 = 9) 

 


 
 (10์˜ ์ œ๊ณฑ์ˆ˜) mod 9 = 1์ด ๋˜๋Š” ์„ฑ์งˆ๋กœ % 9 ์—ฐ์‚ฐ์„ ์‚ฌ์šฉํ•˜์—ฌ ๋””์ง€ํ„ธ ๋ฃจํŠธ๋ฅผ ๊ตฌํ•˜๋Š” ๊ฒƒ์ด ๊ฐ€๋Šฅํ•˜๋‹ค. ์ด ๋ฐฉ๋ฒ•์€ ํŠนํžˆ ํฐ ์ˆซ์ž์— ๋Œ€ํ•ด ๊ณ„์‚ฐํ•  ๋•Œ ์œ ์šฉํ•˜๋ฉฐ, ์ฝ”๋“œ์˜ ํšจ์œจ์„ฑ๊ณผ ์„ฑ๋Šฅ์„ ๋†’์ด๋Š” ๋ฐ ๋„์›€์ด ๋  ์ˆ˜ ์žˆ๋‹ค.

 

๋ถ€์—ฐ ์„ค๋ช… ์ถ”๊ฐ€ 

  • 10 ≡ 1 (mod 9)์ด๋ฏ€๋กœ,
    10^k≡1^k≡1 (mod 9)
  • ์•„๋ž˜์™€ ๊ฐ™์ด ๊ณต์‹ํ™” ํ•  ์ˆ˜ ์žˆ๋‹ค. (9๋ฅผ b - 1๋กœ ๋ฐ”๊พธ๋ฉด, ์ง„์ˆ˜๊ฐ€ b์ธ ์ง„๋ฒ•์œผ๋กœ ์ผ๋ฐ˜ํ™”ํ•  ์ˆ˜ ์žˆ์Œ)


 
 
 
 
 
์ฐธ๊ณ  ๋ฌธ์ œ 
https://www.acmicpc.net/problem/6378

 

6378๋ฒˆ: ๋””์ง€ํ„ธ ๋ฃจํŠธ

์–‘์˜ ์ •์ˆ˜ N์˜ ๋””์ง€ํ„ธ ๋ฃจํŠธ๋ฅผ ๊ตฌํ•˜๋ ค๋ฉด N์„ ์ด๋ฃจ๊ณ  ์žˆ๋Š” ๋ชจ๋“  ์ž๋ฆฌ์ˆ˜๋ฅผ ๋”ํ•ด์•ผ ํ•œ๋‹ค. ์ด๋•Œ, ๋”ํ•œ ๊ฐ’์ด ํ•œ ์ž๋ฆฌ ์ˆซ์ž๋ผ๋ฉด, ๊ทธ ์ˆ˜๊ฐ€ N์˜ ๋””์ง€ํ„ธ ๋ฃจํŠธ๊ฐ€ ๋œ๋‹ค. ๋‘ ์ž๋ฆฌ ์ด์ƒ ์ˆซ์ž์ธ ๊ฒฝ์šฐ์—๋Š” ๋‹ค์‹œ ๊ทธ

www.acmicpc.net

https://www.hackerrank.com/challenges/recursive-digit-sum/problem

 

Recursive Digit Sum | HackerRank

recursively sum all digits in a number until there is only one left

www.hackerrank.com

 
์ฐธ๊ณ  ์ž๋ฃŒ

https://ko.wikipedia.org/wiki/%EC%9E%90%EB%A6%BF%EC%88%98%EA%B7%BC
https://www.quora.com/How-would-I-prove-that-every-positive-integer-is-congruent-to-the-sum-of-its-base-10-digits-modulo-9

 

์ž๋ฆฟ์ˆ˜๊ทผ - ์œ„ํ‚ค๋ฐฑ๊ณผ, ์šฐ๋ฆฌ ๋ชจ๋‘์˜ ๋ฐฑ๊ณผ์‚ฌ์ „

์œ„ํ‚ค๋ฐฑ๊ณผ, ์šฐ๋ฆฌ ๋ชจ๋‘์˜ ๋ฐฑ๊ณผ์‚ฌ์ „. ์Œ์ด ์•„๋‹Œ ์ •์ˆ˜์˜ ์ž๋ฆฟ์ˆ˜๊ทผ(์˜์–ด: digital root, ๋ฐ˜๋ณต์  ์ž๋ฆฟ์ˆ˜ํ•ฉ(repeated digital sum)์ด๋ผ๊ณ ๋„ ํ•จ)์€ ์ž๋ฆฟ์ˆ˜๋ฅผ ๋”ํ•˜๋Š” ๊ณผ์ •์„ ๋ฐฉ๊ธˆ ๊ตฌํ•œ ๊ทธ ๊ฐ’์˜ ์ž๋ฆฟ์ˆ˜ํ•ฉ์—์„œ ์ž๋ฆฟ์ˆ˜

ko.wikipedia.org

 

 

How would I prove that every positive integer is congruent to the sum of its (base-10) digits modulo 9?

Answer (1 of 5): Let’s say that your positive number is N. Writing N in terms of its digits is N = (sum) [ d[j] * 10^j ], where d[0], d[1], d[2], …. are the digits of N. The sum starts at j=0. Notice now that 10^1 = (9*1 + 1), 10^2 = (9*11 + 1), 10^3 =

www.quora.com

728x90