์ผ | ์ | ํ | ์ | ๋ชฉ | ๊ธ | ํ |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
- ํฐ์คํ ๋ฆฌ์ฑ๋ฆฐ์ง
- ๋ฐ์ดํฐ ์ ์ก
- IEEE 802
- xv6
- ์ฃผ๊ธฐ์ ํธ
- ๋น์ฃผ๊ธฐ์ ํธ
- ์ฐ๋ถํฌdb
- ํญํด99
- mariadb
- ํ๋ก์ด๋์์
- ํ ํฐ ๋ฒ์ค
- ๊ฐ๋ฐ์์ทจ์
- ์ค๋ฅ๊ฒ์ถ
- ์ฝ๋ฉํ ์คํธ์ค๋น
- git merge
- til
- 99ํด๋ฝ
- tcp ์ธ๊ทธ๋จผํธ
- ํ๋ ์ ๊ตฌ์กฐ
- reducible
- well known ํฌํธ
- ์ค๋ธ์
- ์์๋ฒํธ
- ๊ทธ๋ฆฌ๋ ์๊ณ ๋ฆฌ์ฆ
- ์๋น์ค ํ๋ฆฌ๋ฏธํฐ๋ธ
- leetcode
- i-type
- ์ค๋ฅ์ ์ด
- tcp ํ๋กํ ์ฝ
- ์ค๋ ๋
- Today
- Total
Unfazedโ๏ธ๐ฏ
10์ ์ ๊ณฑ์์ ๋ชจ๋๋ก 9 ์ฐ์ฐ์ ํ์ฉ, ๋์งํธ ๋ฃจํธ(์๋ฆฟ์๊ทผ), repeated digital sum ๋ณธ๋ฌธ
10์ ์ ๊ณฑ์์ ๋ชจ๋๋ก 9 ์ฐ์ฐ์ ํ์ฉ, ๋์งํธ ๋ฃจํธ(์๋ฆฟ์๊ทผ), repeated digital sum
9taetae9 2024. 1. 13. 04:43๋์งํธ ๋ฃจํธ๋ฅผ ๊ณ์ฐํ ๋ % 9 ์ฐ์ฐ์ ์ฌ์ฉํ๋ ๊ฒ์ ์ซ์์ '๋ชจ๋๋ก 9'์ ๋ํ ์ฑ์ง๊ณผ ๊ด๋ จ์ด ์๋ค.
์ซ์์ '๊ฐ ์๋ฆฌ์์ ํฉ'๊ณผ '๋ชจ๋๋ก 9' ์ฐ์ฐ ๊ฐ์ ๊ด๊ณ๋ฅผ ์ดํด๋ณด์.
๋ชจ๋๋ก ์ฐ์ฐ์ ๋ง์
๊ณผ ๊ณฑ์
์ ๋ํด ๋ถ๋ฐฐ ๋ฒ์น์ ๋ง์กฑํ๋ค. ์ฆ, (a + b) % n = ((a % n) + (b % n)) % n๊ณผ (a * b) % n = ((a % n) * (b % n)) % n์ด๋ค.
๊ฐ ์๋ฆฌ์์ ํฉ = ํด๋น ์ซ์ ๋ชจ๋๋ก 9
์ด๋ค ์ซ์๋ฅผ 10์ง๋ฒ์ผ๋ก ํํํ์ ๋, ํด๋น ์์ ๋์งํธ ๋ฃจํธ๋ ํด๋น ์๋ฅผ 9๋ก ๋๋ ๋๋จธ์ง์ ๊ฐ๋ค. ์๋ฅผ ๋ค์ด, ์ซ์ 467์ 4 * 100 + 6 * 10 + 7๊ณผ ๊ฐ์ด ํํํ ์ ์๋ค. ์ด ๋, 100๊ณผ 10์ (mod 9) ์ฐ์ฐ์ ์ํด 1์ด ๋๋ฏ๋ก (์ฆ, 100 % 9 = 10 % 9 = 1), 467 % 9๋ (4 * 100 + 6 * 10 + 7) % 9 ์ (4 + 6 + 7) % 9 ๊ณผ ๊ฐ์์ง๋ค. ์ด์ด์ ๋์๋ฆฌ ์(4+6+7=17) ์ด๋ฏ๋ก ๊ณ์ํด์ ์ฐ์ฐํ๋ฉด (1 * 10 + 7) % 9 = 8 ์ด๋ฏ๋ก 467์ ๋์งํธ ๋ฃจํธ๋ 8์ด๋ค.
ํด๋น๊ณผ์ ์ ๋ชจ๋๋ก ๊ณฑ์
๋ถ๋ฐฐ ๋ฒ์น์ ์๋ตํ๊ณ 467 % 9 = 8 ๋ก ๊ฐ๋จํ๊ฒ ๊ตฌํ ์ ์๋ค.
**mod 9 ์ฐ์ฐ์ ๊ฒฐ๊ณผ๊ฐ 0์ธ ๊ฒฝ์ฐ, ๋์งํธ ๋ฃจํธ๋ 9๋ก ์ ์๋๋ค(์: 18์ ๋์งํธ ๋ฃจํธ๋ 1 + 8 = 9)
(10์ ์ ๊ณฑ์) mod 9 = 1์ด ๋๋ ์ฑ์ง๋ก % 9 ์ฐ์ฐ์ ์ฌ์ฉํ์ฌ ๋์งํธ ๋ฃจํธ๋ฅผ ๊ตฌํ๋ ๊ฒ์ด ๊ฐ๋ฅํ๋ค. ์ด ๋ฐฉ๋ฒ์ ํนํ ํฐ ์ซ์์ ๋ํด ๊ณ์ฐํ ๋ ์ ์ฉํ๋ฉฐ, ์ฝ๋์ ํจ์จ์ฑ๊ณผ ์ฑ๋ฅ์ ๋์ด๋ ๋ฐ ๋์์ด ๋ ์ ์๋ค.
๋ถ์ฐ ์ค๋ช ์ถ๊ฐ
- 10 ≡ 1 (mod 9)์ด๋ฏ๋ก,
10^k≡1^k≡1 (mod 9) - ์๋์ ๊ฐ์ด ๊ณต์ํ ํ ์ ์๋ค. (9๋ฅผ b - 1๋ก ๋ฐ๊พธ๋ฉด, ์ง์๊ฐ b์ธ ์ง๋ฒ์ผ๋ก ์ผ๋ฐํํ ์ ์์)
์ฐธ๊ณ ๋ฌธ์
https://www.acmicpc.net/problem/6378
6378๋ฒ: ๋์งํธ ๋ฃจํธ
์์ ์ ์ N์ ๋์งํธ ๋ฃจํธ๋ฅผ ๊ตฌํ๋ ค๋ฉด N์ ์ด๋ฃจ๊ณ ์๋ ๋ชจ๋ ์๋ฆฌ์๋ฅผ ๋ํด์ผ ํ๋ค. ์ด๋, ๋ํ ๊ฐ์ด ํ ์๋ฆฌ ์ซ์๋ผ๋ฉด, ๊ทธ ์๊ฐ N์ ๋์งํธ ๋ฃจํธ๊ฐ ๋๋ค. ๋ ์๋ฆฌ ์ด์ ์ซ์์ธ ๊ฒฝ์ฐ์๋ ๋ค์ ๊ทธ
www.acmicpc.net
https://www.hackerrank.com/challenges/recursive-digit-sum/problem
Recursive Digit Sum | HackerRank
recursively sum all digits in a number until there is only one left
www.hackerrank.com
์ฐธ๊ณ ์๋ฃ
https://ko.wikipedia.org/wiki/%EC%9E%90%EB%A6%BF%EC%88%98%EA%B7%BC
https://www.quora.com/How-would-I-prove-that-every-positive-integer-is-congruent-to-the-sum-of-its-base-10-digits-modulo-9
์๋ฆฟ์๊ทผ - ์ํค๋ฐฑ๊ณผ, ์ฐ๋ฆฌ ๋ชจ๋์ ๋ฐฑ๊ณผ์ฌ์
์ํค๋ฐฑ๊ณผ, ์ฐ๋ฆฌ ๋ชจ๋์ ๋ฐฑ๊ณผ์ฌ์ . ์์ด ์๋ ์ ์์ ์๋ฆฟ์๊ทผ(์์ด: digital root, ๋ฐ๋ณต์ ์๋ฆฟ์ํฉ(repeated digital sum)์ด๋ผ๊ณ ๋ ํจ)์ ์๋ฆฟ์๋ฅผ ๋ํ๋ ๊ณผ์ ์ ๋ฐฉ๊ธ ๊ตฌํ ๊ทธ ๊ฐ์ ์๋ฆฟ์ํฉ์์ ์๋ฆฟ์
ko.wikipedia.org
How would I prove that every positive integer is congruent to the sum of its (base-10) digits modulo 9?
Answer (1 of 5): Let’s say that your positive number is N. Writing N in terms of its digits is N = (sum) [ d[j] * 10^j ], where d[0], d[1], d[2], …. are the digits of N. The sum starts at j=0. Notice now that 10^1 = (9*1 + 1), 10^2 = (9*11 + 1), 10^3 =
www.quora.com
'๋ฌธ์ ํด๊ฒฐ (PS) > ๊ธฐ์ตํด๋ ๊ฒ' ์นดํ ๊ณ ๋ฆฌ์ ๋ค๋ฅธ ๊ธ
|a - b| = |c - d| ์ ๋๊ฐ ์ฐจ์ด๊ฐ ๊ฐ์ ๊ฒฝ์ฐ ํ์ฉํ๊ธฐ (0) | 2024.09.19 |
---|---|
2์ ์ ๊ณฑ์ ํ๋ณ, ์๊ฑฐ๋ ๊ฐ์ ์๋ค ์ค ๊ฐ์ฅ ํฐ 2์ ์ ๊ณฑ์ ๊ตฌํ๊ธฐ (0) | 2024.01.17 |
๋ฐฐ์ ํ์ ๋ฒ (0) | 2024.01.13 |
๋ถ๋ถ ์์ด (0) | 2023.12.22 |
MOD ์ฐ์ฐ์ ํน์ฑ (๋ถ๋ฐฐ ๋ฒ์น) (0) | 2023.09.27 |