일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | ||||
4 | 5 | 6 | 7 | 8 | 9 | 10 |
11 | 12 | 13 | 14 | 15 | 16 | 17 |
18 | 19 | 20 | 21 | 22 | 23 | 24 |
25 | 26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 주기신호
- tcp 프로토콜
- 비주기신호
- reducible
- xv6
- 그리디 알고리즘
- 오블완
- 오류제어
- 토큰 버스
- 개발자취업
- 스레드
- IEEE 802
- 오류검출
- 항해99
- 99클럽
- git merge
- 프레임 구조
- tcp 세그먼트
- 서비스 프리미티브
- i-type
- til
- 코딩테스트준비
- 플로이드워셜
- mariadb
- 순서번호
- 우분투db
- 데이터 전송
- 티스토리챌린지
- leetcode
- well known 포트
Archives
- Today
- Total
Unfazed❗️🎯
Comparative Analysis of Classification Models: Logistic Regression, Naive Bayes, LDA, and QDA 본문
AI/머신러닝
Comparative Analysis of Classification Models: Logistic Regression, Naive Bayes, LDA, and QDA
9taetae9 2024. 4. 3. 13:10728x90
Criteria | Logistic Regression | Naive Bayes Classifier | Linear Discriminant Analysis (LDA) | Quadratic Discriminant Analysis (QDA) |
Model Type | Parametric | Parametric | Parametric | Parametric |
Assumption about Data Distribution | None on distribution, assumes a linear relationship between log odds and features | Assumes independence between features, with specific distribution per class | Assumes Gaussian distribution with same covariance matrix for each class | Assumes Gaussian distribution with different covariance matrices for each class |
Decision Boundary | Linear | Linear or Non-linear | Linear | Quadratic (Non-linear) |
Computation Complexity | Moderate | Low | Low to Moderate | Moderate |
Robustness to Outliers | Moderate | Low | Low | Low |
Scalability | Good | Very Good | Moderate | Limited |
Use Case | Binary classification, where interpretability is important | Baseline for text classification, when features are independent | When the Gaussian assumption holds, and a linear classifier is preferred | When the Gaussian assumption holds but classes have different covariances, allowing for non-linear decision boundaries |
Considers Covariance | No | No | Yes | Yes |
Assumes Same Variance (Covariance) | Not Applicable | Yes, implicitly due to feature independence | Yes | No |
Limitations | Assumes linear relationship, which may not fit all datasets | Simplistic feature independence assumption can be unrealistic for complex datasets | Sensitive to outliers due to reliance on covariance; performs poorly if assumptions about Gaussian distribution and equal covariances are violated | Computationally intensive with high-dimensional data; sensitive to outliers; requires sufficient data to estimate covariances accurately for each class |
728x90
'AI > 머신러닝' 카테고리의 다른 글
F-통계량 (귀무 가설 H0 기각 가능성) (0) | 2024.04.20 |
---|---|
ch2_learning2 편향-분산 Bias-variance Trade-off (0) | 2024.04.16 |
ch2_learning2 (Balancing Flexibility to Optimize Model Accuracy) 모델의 정확도 평가 (0) | 2024.03.13 |
ch2_learning (0) | 2024.03.12 |
ch1_overview (0) | 2024.03.06 |